English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bioelectrocatalytic CO2 Reduction by Mo-Dependent Formylmethanofuran Dehydrogenase

MPS-Authors
/persons/resource/persons256577

Lemaire,  Olivier N.
Research Group Microbial Metabolism, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons290081

Belhamri,  Mélissa
Research Group Microbial Metabolism, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons256582

Wagner,  Tristan
Research Group Microbial Metabolism, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Sahin, S., Lemaire, O. N., Belhamri, M., Kurth, J. M., Welte, C. U., Wagner, T., et al. (2023). Bioelectrocatalytic CO2 Reduction by Mo-Dependent Formylmethanofuran Dehydrogenase. Angewandte Chemie, International Edition in English. doi:10.1002/anie.202311981.


Cite as: https://hdl.handle.net/21.11116/0000-000D-CB42-4
Abstract
Massiveeffortsare investedin developinginnovativeCO2-sequestrationstrategiesto counterclimatechangeandtransformCO2intohigher-valueproducts.CO2-captureby reductionis a chemicalchallenge,andattentionis turnedtowardbiologicalsystemsthatselectivelyandefficientlycatalysethisreactionundermildconditionsandin aqueoussolvents.Whilea fewreportshaveevaluatedthe effectivenessof isolatedbacterialformatedehydrogenasesas catalystsforthereversibleelectrochemicalreductionof CO2, it is imperativeto exploreotherenzymesamongthenaturalreservoirof potentialmodelsthatmightexhibithigherturnoverratesor preferentialdirectionalityfor thereductivereaction.Here,we presentelectroenzymaticcatalysisof formylmethanofurandehydrogenase,a CO2-reducing-and-fixingbiomachineryisolatedfroma thermophilicmethanogen,whichwasdepositedon a graphiterodelectrodeto enabledirectelectrontransferfor electroenzymaticCO2reduction.Thegas is reducedwitha highFaradaicefficiency(109�1%),wherea lowaffinityfor formatepreventsits electrochemicalreoxidationandfavoursformateaccumulation.Thesepropertiesmakethe enzymean excellenttoolfor electroenzymaticCO2-fixationandinspirationfor proteinengineeringthatwouldbe beneficialfor biotechnologicalpurposesto convertthegreenhousegasintostableformatethatcansubsequentlybe safelystored,transported,andusedfor powergenerationwithoutenergyloss.