日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Influence of physical interactions on spatiotemporal patterns

MPS-Authors
/persons/resource/persons291796

Luo,  Chengjie
Max Planck Research Group Theory of Biological Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons185097

Zwicker,  David
Max Planck Research Group Theory of Biological Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

PhysRevE.108.034206.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Luo, C., & Zwicker, D. (2023). Influence of physical interactions on spatiotemporal patterns. Physical Review E, 108(3):. doi:10.1103/PhysRevE.108.034206.


引用: https://hdl.handle.net/21.11116/0000-000D-FCB1-F
要旨
Spatiotemporal patterns are often modeled using reaction-diffusion equations, which combine complex reactions between constituents with ideal diffusive motion. Such descriptions neglect physical interactions between constituents, which might affect resulting patterns. To overcome this, we study how physical interactions affect cyclic dominant reactions, like the seminal rock-paper-scissors game, which exhibits spiral waves for ideal diffusion. Generalizing diffusion to incorporate physical interactions, we find that weak interactions change the length- and time scales of spiral waves, consistent with a mapping to the complex Ginzburg-Landau equation. In contrast, strong repulsive interactions typically generate oscillating lattices, and strong attraction leads to an interplay of phase separation and chemical oscillations, like droplets co-locating with cores of spiral waves. Our work suggests that physical interactions are relevant for forming spatiotemporal patterns in nature, and it might shed light on how biodiversity is maintained in ecological settings.