English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Correct Brillouin zone and electronic structure of BiPd

MPS-Authors
/persons/resource/persons280689

Yaresko,  A.
Department Quantum Materials (Hidenori Takagi), Max Planck Institute for Solid State Research, Max Planck Society;
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279870

Damascelli,  A.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

Ast,  C.
Max Planck Society;

/persons/resource/persons280632

Wahl,  P.
Former Research Groups, Max Planck Institute for Solid State Research, Max Planck Society;
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yaresko, A., Schnyder, A., Benia, H., Yim, C., Levy, G., Damascelli, A., et al. (2018). Correct Brillouin zone and electronic structure of BiPd. Physical Review B, 97(7): 075108.


Cite as: https://hdl.handle.net/21.11116/0000-000E-E0A3-C
Abstract
A promising route to the realization of Majorana fermions is in noncentrosymmetric superconductors, in which spin-orbit coupling lifts the spin degeneracy of both bulk and surface bands. A detailed assessment of the electronic structure is critical to evaluate their suitability for this through establishing the topological properties of the electronic structure. This requires correct identification of the time-reversal-invariant momenta. One such material is BiPd, a recently rediscovered noncentrosymmetric superconductor which can be grown in large, high-quality single crystals and has been studied by several groups using angular resolved photoemission to establish its surface electronic structure. Many of the published electronic structure studies on this material are based on a reciprocal unit cell which is not the actual Brillouin zone of the material. We show here the consequences of this for the electronic structures and show how the inferred topological nature of the material is affected.