English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tunable geometrical frustration in magnonic vortex crystals

MPS-Authors

Hänze,  M.
Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Behncke, C., Adolff, C., Wintz, S., Hänze, M., Schulte, B., Weigand, M., et al. (2018). Tunable geometrical frustration in magnonic vortex crystals. Scientific Reports, 8: 186.


Cite as: https://hdl.handle.net/21.11116/0000-000E-E000-4
Abstract
A novel approach to investigate geometrical frustration is introduced using two-dimensional magnonic vortex crystals. The frustration of the crystal can be manipulated and turned on and off dynamically on the timescale of milliseconds. The vortices are studied using scanning transmission x-ray microscopy and ferromagnetic resonance spectroscopy. They are arranged analogous to the nanomagnets in artificial spin-ice systems. The polarization state of the vortices is tuned in a way that geometrical frustration arises. We demonstrate that frustrated polarization states and non-frustrated states can be tuned to the crystal by changing the frequency of the state formation process.