English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bimodal exciton-plasmon light sources controlled by local charge carrier injection

MPS-Authors
/persons/resource/persons280194

Kuhnke,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280131

Kern,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Merino, P., Rosławska, A., Grosse, C., Leon, C., Kuhnke, K., & Kern, K. (2018). Bimodal exciton-plasmon light sources controlled by local charge carrier injection. Science Advances, 4(5): eaap8349.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D666-E
Abstract
Electrical charges can generate photon emission in nanoscale quantum systems by two independent mechanisms. First, radiative recombination of pairs of oppositely charged carriers generates sharp excitonic lines. Second, coupling between currents and collective charge oscillations results in broad plasmonic bands. Both luminescence modes can be simultaneously generated upon charge carrier injection into thin C-60 crystallites placed in the plasmonic nanocavity of a scanning tunneling microscope (STM). Using the sharp tip of the STM as a subnanometer-precise local electrode, we show that the two types of electroluminescence are induced by two separate charge transport channels. Holes injected into the valence band promote exciton generation, whereas electrons extracted from the conduction band cause plasmonic luminescence. The different dynamics of the two mechanisms permit controlling their relative contribution in the combined bimodal emission. Exciton recombination prevails for low charge injection rates, whereas plasmon decay outshines for high tunneling currents. The continuous transition between both regimes is described by a rate model characterizing emission dynamics on the nanoscale. Our work provides the basis for developing blended exciton-plasmon light sources with advanced functionalities.