English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chemical Principles of Topological Semimetals

MPS-Authors
/persons/resource/persons280253

Lotsch,  B. V.
Department Nanochemistry (Bettina V. Lotsch), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schoop, L. M., Pielnhofer, F., & Lotsch, B. V. (2018). Chemical Principles of Topological Semimetals. Chemistry of Materials, 30(10), 3155-3176.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D8AE-B
Abstract
Initiated by the discovery of topological insulators, topologically non-trivial materials have attracted immense interest in the physics community in the past decade. One of the latest additions to the field, the material class of topological semimetals (TSMs), has grown at an extremely fast rate. While the prototype TSM, graphene, has been known for a while, the first 3D analogues of graphene have only been discovered recently. This Review, written from a chemistry perspective, intends to make the growing field of TSMs accessible to the wider community of materials scientists and scholars from related disciplines. To this end, we describe key features of TSMs, embedded in their electronic structure, and how they can be achieved based on chemical principles. We introduce the different classes of TSMs and review their salient representatives. Finally, selected properties and potential applications of these materials are discussed.