English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging

MPS-Authors
/persons/resource/persons280640

Wang,  Y.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280020

Hahn,  K.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280523

Sigle,  W.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280611

van Aken,  P. A.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, Y., Suyolcu, Y., Salzberger, U., Hahn, K., Srot, V., Sigle, W., et al. (2018). Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging. Microscopy, 67(Suppl. 1), i114-i122.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D944-1
Abstract
Specimen and stage drift as well as scan distortions can lead to a mismatch between true and desired electron probe positions in scanning transmission electron microscopy (STEM) which can result in both linear and nonlinear distortions in the subsequent experimental images. This problem is intensified in STEM spectrum and diffraction imaging techniques owing to the extended dwell times (pixel exposure time) as compared to conventional STEM imaging. As a consequence, these image distortions become more severe in STEM spectrum/diffraction imaging. This becomes visible as expansion, compression and/or shearing of the crystal lattice, and can even prohibit atomic resolution and thus limits the interpretability of the results. Here, we report a software tool for post-correcting the linear and nonlinear image distortions of atomically resolved 3D spectrum imaging as well as 4D diffraction imaging. This tool improves the interpretability of distorted STEM spectrum/diffraction imaging data.