Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Linear-in-Frequency Optical Conductivity in GdPtBi due to Transitions near the Triple Points

MPG-Autoren
/persons/resource/persons280689

Yaresko,  A.
Department Quantum Materials (Hidenori Takagi), Max Planck Institute for Solid State Research, Max Planck Society;
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hütt, F., Yaresko, A., Schilling, M., Shekhar, C., Felser, C., Dressel, M., et al. (2018). Linear-in-Frequency Optical Conductivity in GdPtBi due to Transitions near the Triple Points. Physical Review Letters, 121(17): 176601.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-D4F6-D
Zusammenfassung
The complex optical conductivity of the half-Heusler compound GdPtBi is measured in a frequency range from 20 to 22 000 cm(-1) (2.5 meV-2.73 eV) at temperatures down to 10 K in zero magnetic field. We find the real part of the conductivity, sigma(1) (omega), to be almost perfectly linear in frequency over a broad range from 50 to 800 cm(-1) (similar to 6-100 meV) for T <= 50 K. This linearity strongly suggests the presence of three-dimensional linear electronic bands with band crossings (nodes) near the chemical potential. Band-structure calculations show the presence of triple points, where one doubly degenerate and one nondegenerate band cross each other in close vicinity of the chemical potential. From a comparison of our data with the optical conductivity computed from the band structure, we conclude that the observed nearly linear sigma(1)(omega) originates as a cumulative effect from all the transitions near the triple points.