English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Single Charge and Exciton Dynamics Probed by Molecular-Scale-Induced Electroluminescence

MPS-Authors
/persons/resource/persons280006

Gunnarsson,  O.
Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;
Department Electronic Structure Theory (Ali Alavi), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280194

Kuhnke,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280131

Kern,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rosławska, A., Merino, P., Grosse, C., Leon, C., Gunnarsson, O., Etzkorn, M., et al. (2018). Single Charge and Exciton Dynamics Probed by Molecular-Scale-Induced Electroluminescence. Nano Letters, 18(6), 4001-4007.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D228-8
Abstract
Excitons and their constituent charge carriers play the central role in electroluminescence mechanisms determining the ultimate performance of organic optoelectronic devices. The involved processes and their dynamics are often studied with time-resolved techniques limited by spatial averaging that obscures the properties of individual electron-hole pairs. Here, we overcome this limit and characterize single charge and exciton dynamics at the nanoscale by using time-resolved scanning tunneling microscopy-induced luminescence (TR-STML) stimulated with nanosecond voltage pulses. We use isolated defects in C-60 thin films as a model system into which we inject single charges and investigate the formation dynamics of a single exciton. Tunable hole and electron injection rates are obtained from a kinetic model that reproduces the measured electroluminescent transients. These findings demonstrate that TR-STML can track dynamics at the quantum limit of single charge injection and can be extended to other systems and materials important for nanophotonic devices.