Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Two-photon interference in an atom-quantum dot hybrid system

MPG-Autoren
/persons/resource/persons280643

Weber,  J.
Scientific Facility Nanostructuring Lab (Jürgen Weis), Max Planck Institute for Solid State Research, Max Planck Society;
Abteilung v. Klitzing, Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;
Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society;
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

Wrachtrup,  J.
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vural, H., Portalupi, S., Maisch, J., Kern, S., Weber, J., Jetter, M., et al. (2018). Two-photon interference in an atom-quantum dot hybrid system. Optica, 5(4), 367-373.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-D33E-F
Zusammenfassung
Future quantum networks will need flying qubits and stationary nodes. As for the generation of single photons which may act as flying qubits, resonantly excited single-semiconductor quantum dots are ideal in terms of their on-demand single-photon emission, indistinguishability, and brightness. Atomic systems can effectively act as mediators for photon-photon interactions, storage media, or building blocks for stationary qubits. Here, we hybridize these two systems and investigate the non-classical interference of spectral Lorentzian-shaped photons, fine-tuned between the cesium (Cs)-D-1 hyperfine resonances. The temporal delay in the dispersive hot atomic cesium vapor amounts up to 50 times the photons' initial width and reveals beats on the single quanta. The photons' indistinguishability is preserved even after atomic-enabled delay. This proves that the interaction with the Cs vapor conserves the photons' coherence. The role of spectral diffusion in the solid-state emitter is studied in single- and two-photon experiments in light of the strong frequency dependence of the atomic medium. Our results pave the way for efficient hybrid interfaces between quantum dots and hot atomic vapors as storage media in future quantum networks. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement