English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells

MPS-Authors
/persons/resource/persons280640

Wang,  Y.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280611

van Aken,  P. A.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cai, Y., Wang, B., Wang, Y., Xia, C., Qiao, J., van Aken, P. A., et al. (2018). Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 384, 318-327.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D324-B
Abstract
YSZ as the electrolyte of choice has dominated the progressive development of solid oxide fuel cell (SOFC) technologies for many years. To enable SOFCs operating at intermediate temperatures of 600 degrees C or below, major technical advances were built on a foundation of a thin-film YSZ electrolyte, NiO anode, and perovskite cathode, e.g. La0.6Sr0.4Co0.8Fe0.2O3-delta (LSCF). Inspired by functionalities in engineered heterostructure interfaces, the present work uses the components from state-of-the-art SOFCs, i.e, the anode NiO-YSZ and the cathode LSCF-YSZ, or the convergence of all three components, i.e., NiO-YSZ-LSCF, to fabricate semiconductor-ionic membranes (SIMs) and devices. A series of proof-of-concept fuel cell devices are designed by using each of the above SIMs sandwiched between two semiconducting Ni0.8Co0.15Al0.05LiO2-delta (NCAL) layers. We systematically compare these novel designs at 600 degrees C with two reference fuel cells: a commercial product of anode-supported YSZ electrolyte thin-film cell, and a lab-assembled fuel cell with a conventional configuration of NiO-YSZ (anode)/YSZ (electrolyte)/LSCF-YSZ (cathode). In comparison to the reference cells, the SIM device in a configuration of NCAL/NiO-YSZ-LSCF/NCAL reaches more than 3-fold enhancement of the maximum power output. By using spherical aberration-corrected transmission electron microscopy and spectroscopy approaches, this work offers insight into the mechanisms underlying SIM-associated SOFC performance enhancement.