English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Beam switching and bifocal zoom lensing using active plasmonic metasurfaces

MPS-Authors

Yin,  X.
Max Planck Society;

/persons/resource/persons280705

Zentgraf,  T.
Former Scientific Facilities, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279970

Giessen,  H.
Former Research Groups, Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yin, X., Steinle, T., Huang, L., Taubner, T., Wuttig, M., Zentgraf, T., et al. (2017). Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light: Science & Applications, 6: e17016.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D502-F
Abstract
Compact nanophotonic elements exhibiting adaptable properties are essential components for the miniaturization of powerful optical technologies such as adaptive optics and spatial light modulators. While the larger counterparts typically rely on mechanical actuation, this can be undesirable in some cases on a microscopic scale due to inherent space restrictions. Here, we present a novel design concept for highly integrated active optical components that employs a combination of resonant plasmonic metasurfaces and the phase-change material Ge3Sb2Te6. In particular, we demonstrate beam switching and bifocal lensing, thus, paving the way for a plethora of active optical elements employing plasmonic metasurfaces, which follow the same design principles.