English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Combining pressure and temperature control in dynamics on energy landscapes

MPS-Authors
/persons/resource/persons280495

Schön,  J. C.
Abteilung Jansen, Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hoffmann, K., & Schön, J. C. (2017). Combining pressure and temperature control in dynamics on energy landscapes. European Physical Journal B, 90(5): 84.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D3D2-6
Abstract
Complex systems from science, technology or mathematics usually appear to be very different in their specific dynamical evolution. However, the concept of an energy landscape with its basins corresponding to locally ergodic regions separated by energy barriers provides a unifying approach to the description of complex systems dynamics. In such systems one is often confronted with the task to control the dynamics such that a certain basin is reached with the highest possible probability. Typically one aims for the global minimum, e.g. when dealing with global optimization problems, but frequently other local minima such as the metastable compounds in materials science are of primary interest. Here we show how this task can be solved by applying control theory using magnesium fluoride as an example system, where different modifications of MgF2 are considered as targets. In particular, we generalize previous work restricted to temperature controls only and present controls which simultaneously adjust temperature and pressure in an optimal fashion.