English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dopant size effects on novel functionalities: High-temperature interfacial superconductivity

MPS-Authors
/persons/resource/persons280640

Wang,  Y.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279990

Gregori,  G.
Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279857

Cristiani,  G.
Scientific Facility Thin Film Technology (Gennady Logvenov), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280523

Sigle,  W.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons217129

Maier,  J.
Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280611

van Aken,  P. A.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280250

Logvenov,  G.
Scientific Facility Thin Film Technology (Gennady Logvenov), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Suyolcu, Y. E., Wang, Y., Baiutti, F., Al-Temimy, A., Gregori, G., Cristiani, G., et al. (2017). Dopant size effects on novel functionalities: High-temperature interfacial superconductivity. Scientific Reports, 7: 453.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D35A-F
Abstract
Among the range of complex interactions, especially at the interfaces of epitaxial oxide systems, contributing to the occurrence of intriguing effects, a predominant role is played by the local structural parameters. In this study, oxide molecular beam epitaxy grown lanthanum cuprate-based bilayers (consisting of a metallic (M) and an insulating phase (I)), in which high-temperature superconductivity arises as a consequence of interface effects, are considered. With the aim of assessing the role of the dopant size on local crystal structure and chemistry, and on the interface functionalities, different dopants (Ca2+, Sr2+ and, Ba2+) are employed in the M-phase, and the M-I bilayers are investigated by complementary techniques, including spherical-aberration-corrected scanning transmission electron microscopy. A series of exciting outcomes are found: (i) the average out-of-plane lattice parameter of the bilayers is linearly dependent on the dopant ion size, (ii) each dopant redistributes at the interface with a characteristic diffusion length, and (iii) the superconductivity properties are highly dependent on the dopant of choice. Hence, this study highlights the profound impact of the dopant size and related interface chemistry on the functionalities of superconducting oxide systems.