English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

MPS-Authors
/persons/resource/persons133803

Loew,  T.
Solid State Spectroscopy, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons133799

Keimer,  B.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mankowsky, R., Fechner, M., Först, M., von Hoegen, A., Porras, J., Loew, T., et al. (2017). Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48. Structural Dynamics, 4(4): 044007.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D25A-0
Abstract
Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy(2)-z(2) orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the inter-layer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions. (C) 2017 Author(s).