English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Effect of (La, Sr)MnO3 Cathode Surface Termination on Its Electronic Structure

MPS-Authors
/persons/resource/persons280176

Kotomin,  E. A.
Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280302

Merkle,  R.
Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280286

Mastrikov,  Yu. A.
Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons217129

Maier,  J.
Department Physical Chemistry of Solids (Joachim Maier), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kotomin, E. A., Merkle, R., Mastrikov, Y. A., Kuklja, M. M., & Maier, J. (2017). The Effect of (La, Sr)MnO3 Cathode Surface Termination on Its Electronic Structure. ECS Transactions, 77(10), 67-73.


Cite as: https://hdl.handle.net/21.11116/0000-000E-D294-D
Abstract
La1-xSrxMnO3 (LSM) was one of the first perovskites used as SOFC cathode material. Its (001) surface has two possible terminations, LaSrO and MnO2, with quite different properties and oxygen reduction efficiencies. To avoid effects of surface polarity and the dipole moment across the material, symmetric non-stoichiometric slabs are commonly used in theoretical calculations with identical terminating planes on its both sides. We analyzed the dependence of the electronic structure (density of states) and charge distribution (effective atomic charges and chemical bond covalency) on the slab termination and Mn ion oxidation state (controlled by the Sr content and slab nonstoichiometry).