English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Defects, Disorder, and Strong Electron Correlations in Orbital Degenerate, Doped Mott Insulators

MPS-Authors
/persons/resource/persons280356

Oleś,  A. M.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280071

Horsch,  P.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Avella, A., Oleś, A. M., & Horsch, P. (2015). Defects, Disorder, and Strong Electron Correlations in Orbital Degenerate, Doped Mott Insulators. Physical Review Letters, 115(20): 206403.


Cite as: https://hdl.handle.net/21.11116/0000-000E-CC38-E
Abstract
We elucidate the effects of defect disorder and e-e interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y1-xCaxVO3. A soft gap of kinetic origin develops in the defect band and survives defect disorder for e-e interaction strengths comparable to the defect potential and hopping integral values above a doping dependent threshold; otherwise only a pseudogap persists. These two regimes naturally emerge in the statistical distribution of gaps among different defect realizations, which turns out to be of Weibull type. Its shape parameter k determines the exponent of the power-law dependence of the density of states at the chemical potential (k - 1) and hence distinguishes between the soft gap (k >= 2) and the pseudogap (k < 2) regimes. Both k and the effective gap scale with the hopping integral and the e-e interaction in a wide doping range. The motion of doped holes is confined by the closest defect potential and the overall spin-orbital structure. Such a generic behavior leads to complex nonhydrogenlike defect states that tend to preserve the underlying C-type spin and G-type orbital order and can be detected and analyzed via scanning tunneling microscopy.