English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

MPS-Authors
/persons/resource/persons280199

Kumar,  A.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280087

Isobe,  M.
Scientific Facility Crystal Growth (Masahiko Isobe), Max Planck Institute for Solid State Research, Max Planck Society;
Department Quantum Materials (Hidenori Takagi), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bhobe, P., Kumar, A., Taguchi, M., Eguchi, R., Matsunami, M., Takata, Y., et al. (2015). Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet. Physical Review X, 5(4): 041004.


Cite as: https://hdl.handle.net/21.11116/0000-000E-CD0A-1
Abstract
Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.