English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Magnetic moments induce strong phonon renormalization in FeSi

MPS-Authors
/persons/resource/persons280129

Keller,  T.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280638

Wang,  L.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Krannich, S., Sidis, Y., Lamago, D., Heid, R., Mignot, J., von Löhneysen, H., et al. (2015). Magnetic moments induce strong phonon renormalization in FeSi. Nature Communications, 6: 8961.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C9BC-C
Abstract
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.