Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spin nematic fluctuations near a spin-density-wave phase

MPG-Autoren
/persons/resource/persons280682

Yamase,  H.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280706

Zeyher,  R.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;
Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yamase, H., & Zeyher, R. (2015). Spin nematic fluctuations near a spin-density-wave phase. New Journal of Physics, 17: 073030.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-CB38-F
Zusammenfassung
We study an interacting electronic system exhibiting a spin nematic instability. Using a phenomenological form for the spin fluctuation spectrum near the spin-density-wave (SDW) phase, we compute the spin nematic susceptibility in energy and momentum space as a function of temperature and the magnetic correlation length.. The spin nematic instability occurs when. reaches a critical value xi(cr), i.e., its transition temperature T-SN is always higher than the SDW critical temperature T-SDW. In particular, xi(cr) decreases monotonically with increasing T-SN. Concomitantly, low-energy nematic fluctuations are present in a wider temperature region as T-SN becomes higher. Approaching the spin nematic instability, the nematic spectral function at zero momentum exhibits a central peak as a function of energy for a finite temperature and a soft mode at zero temperature. These properties originate from the general feature that the imaginary part of the spin-fluctuation bubble has a term linear in energy and its coefficient is proportional to the square of temperature. Furthermore we find that the nematic spectral function exhibits a diffusive peak around zero momentum and zero energy without clear dispersive features. A possible phase diagram for the spin nematic and SDW transitions is also discussed.