English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spin-triplet electron transport in hybrid superconductor heterostructures with a composite ferromagnetic interlayer

MPS-Authors

Khaydukov,  Y.
Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sheyerman, A., Constantinian, K., Ovsyannikov, G., Kislinskii, Y., Shadrin, A., Kalabukhov, A., et al. (2015). Spin-triplet electron transport in hybrid superconductor heterostructures with a composite ferromagnetic interlayer. Journal of Experimental and Theoretical Physics, 120(6), 1024-1033.


Cite as: https://hdl.handle.net/21.11116/0000-000E-CB1E-D
Abstract
Hybrid YBa2Cu3O7 - x /SrRuO3/La0.7Sr0.3MnO3/Au-Nb superconductor mesastructures with a composite manganite-ruthenate ferromagnetic interlayer are studied using electrophysical, magnetic, and microwave methods. The supercurrent in the mesastructure is observed when the interlayer thickness is much larger than the coherence length of ferromagnetic materials. The peak on the dependence of the critical current density on the interlayer material thickness corresponds to the coherence length, which is in qualitative agreement with theoretical predictions for a system with spit-triplet superconducting correlations. The magnetic-field dependence of the critical current is determined by penetration of magnetic flux quanta and by the magnetic domain structure, as well as by the field dependence of disorientation of the magnetization vectors of the layers in the composite magnetic interlayer. It is found that the supercurrent exists in magnetic fields two orders of magnitude stronger than the field corresponding to entry of a magnetic flux quantum into the mesastructure. The current-phase relation (CPR) of the supercurrent of mesastructures is investigated upon a change in the magnetic field from zero to 30 Oe; the ratio of the second CPR harmonic to the first, determined from the dependence of the Shapiro steps on the microwave radiation amplitude, does not exceed 50%.