English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A Natural Topological Insulator

MPS-Authors
/persons/resource/persons135493

Dinnebier,  R. E.
Scientific Facility X-Ray Diffraction (Robert E. Dinnebier), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279744

Ast,  C. R.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279819

Burghard,  M.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280131

Kern,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gehring, P., Benia, H. M., Weng, Y., Dinnebier, R. E., Ast, C. R., Burghard, M., et al. (2013). A Natural Topological Insulator. Nano Letters, 13(3), 1179-1184.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C657-1
Abstract
The earth's crust and outer space are rich sources of technologically relevant materials which have found application in a wide range of fields. Well-established examples are diamond, one of the hardest known materials, or graphite as a suitable precursor of graphene. The ongoing drive to discover novel materials useful for (opto)electronic applications has recently drawn strong attention to topological insulators. Here, we report that Kawazulite, a mineral with the approximate composition Bi-2(Te,Se)(2)(Se,S), represents a naturally occurring topological insulator whose electronic properties compete well with those of its synthetic counterparts. Kawazulite flakes with a thickness of a few tens of nanometers were prepared by mechanical exfoliation. They exhibit a low intrinsic bulk doping level and correspondingly a sizable mobility of surface state carriers of more than 1000 cm(2)/(V s) at low temperature. Based on these findings, further minerals which due to their minimized defect densities display even better electronic characteristics may be identified in the future.