Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Mean-field theory on a coupled system of ferromagnetism and electronic nematic order


Yamase,  H.
Department Quantum Many-Body Theory (Walter Metzner), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Yamase, H. (2013). Mean-field theory on a coupled system of ferromagnetism and electronic nematic order. Physical Review B, 87(19): 195117.

Cite as: https://hdl.handle.net/21.11116/0000-000E-C617-9
We analyze an effective model on a square lattice with two types of forward scattering interactions, which, respectively, drive ferromagnetism (FM) and electronic nematic order via a d-wave Pomeranchuk instability (dPI). The FMand dPI in general compete with each other and they are typically separated by a first-order phase boundary in the plane of the chemical potential and temperature. Nevertheless, there is a parameter region where the dPI occurs inside the FM phase, leading to their coexistence. We also study the effect of a magnetic field by choosing a chemical potential where the ground state is paramagnetic without a field. In this case, instead of FM, the dPI competes with a metamagnetic instability. The latter occurs above a threshold strength of the FM interaction and otherwise the dPI is stabilized with a dome-shaped phase diagram in the plane of a magnetic field and temperature. The FM interaction shifts the center of the dome to a lower field, accompanied by a substantial reduction of the field range where the dPI is stabilized and by an extension of the first-order part of the transition line, although the maximal critical temperature does not change. Our results indicate that proximity to the FM instability can be important to understand the experimental phase diagram observed in the bilayer ruthenate Sr3Ru2O7.