English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Surface-enhanced charge-density-wave instability in underdoped Bi2Sr2-xLaxCuO6+δ

MPS-Authors
/persons/resource/persons133799

Keimer,  B.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279870

Damascelli,  A.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rosen, J. A., Comin, R., Levy, G., Fournier, D., Zhu, Z. H., Ludbrook, B., et al. (2013). Surface-enhanced charge-density-wave instability in underdoped Bi2Sr2-xLaxCuO6+δ. Nature Communications, 4: 1977.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C76D-8
Abstract
Neutron and X-ray scattering experiments have provided mounting evidence for spin and charge ordering phenomena in underdoped cuprates. These range from early work on stripe correlations in Nd-LSCO to the latest discovery of charge-density-waves in YBa2Cu3O6 + x. Both phenomena are characterized by a pronounced dependence on doping, temperature and an externally applied magnetic field. Here, we show that these electron-lattice instabilities exhibit also a previously unrecognized bulk-surface dichotomy. Surface-sensitive electronic and structural probes uncover a temperature-dependent evolution of the CuO2 plane band dispersion and apparent Fermi pockets in underdoped Bi-2 Sr2-x La-x CuO6 + delta (Bi2201), which is directly associated with an hitherto-undetected strong temperature dependence of the incommensurate superstructure periodicity below 130 K. In stark contrast, the structural modulation revealed by bulk-sensitive probes is temperature-independent. These findings point to a surface-enhanced incipient charge-density-wave instability, driven by Fermi surface nesting. This discovery is of critical importance in the interpretation of single-particle spectroscopy data, and establishes the surface of cuprates and other complex oxides as a rich playground for the study of electronically soft phases.