English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ab initio and empirical energy landscapes of (MgF2)n clusters (n = 3, 4)

MPS-Authors
/persons/resource/persons280495

Schön,  J. C.
Abteilung Jansen, Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279896

Doll,  K.
Abteilung Jansen, Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280091

Jansen,  M.
Abteilung Jansen, Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Neelamraju, S., Schön, J. C., Doll, K., & Jansen, M. (2012). Ab initio and empirical energy landscapes of (MgF2)n clusters (n = 3, 4). Physical Chemistry Chemical Physics, 14(3), 1223-1234.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C56B-C
Abstract
We explore the energy landscape of (MgF(2))(3) on both the empirical and ab initio level using the threshold algorithm. In order to determine the energy landscape and the dynamics of the trimer we investigate not only the stable isomers but also the barriers separating these isomers. Furthermore, we study the probability flows in order to estimate the stability of all the isomers found. We find that there is reasonable qualitative agreement between the ab initio and empirical potential, and important features such as sub-basins and energetic barriers follow similar trends. However, we observe that the energies are systematically different for the less compact clusters, when comparing empirical and ab initio energies. Since the underlying motivation of this work is to identify the possible clusters present in the gas phase during a low-temperature atom beam deposition synthesis of MgF(2), we employ the same procedure to additionally investigate the energy landscape of the tetramer. For this case, however, we use only the empirical potential.