English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electroless synthesis of 3 nm wide alloy nanowires inside Tobacco mosaic virus

MPS-Authors
/persons/resource/persons279759

Balci,  S.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280020

Hahn,  K.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280169

Kopold,  P.
Scientific Facility Stuttgart Center for Electron Microscopy (Peter A. van Aken), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280131

Kern,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279793

Bittner,  A. M.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Balci, S., Hahn, K., Kopold, P., Kadri, A., Wege, C., Kern, K., et al. (2012). Electroless synthesis of 3 nm wide alloy nanowires inside Tobacco mosaic virus. Nanotechnology, 23(4): 045603.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C3D5-5
Abstract
We show that 3 nm wide cobalt-iron alloy nanowires can be synthesized by simple wet chemical electroless deposition inside tubular Tobacco mosaic virus particles. The method is based on adsorption of Pd(II) ions, formation of a Pd catalyst, and autocatalytic deposition of the alloy from dissolved metal salts, reduced by a borane compound. Extensive energy-filtering TEM investigations at the nanoscale revealed that the synthesized wires are alloys of Co, Fe, and Ni. We confirmed by high-resolution TEM that our alloy nanowires are at least partially crystalline, which is compatible with typical Co-rich alloys. Ni traces bestow higher stability, presumably against corrosion, as also known from bulk CoFe. Alloy nanowires, as small as the ones presented here, might be used for a variety of applications including high density data storage, imaging, sensing, and even drug delivery.