English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x

MPS-Authors
/persons/resource/persons133801

Le Tacon,  M.
Solid State Spectroscopy, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons133803

Loew,  T.
Solid State Spectroscopy, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280469

Sawatzky,  G. A.
External Scientific Members, Max Planck Institute for Solid State Research, Max Planck Society;
Miscellaneous, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons133799

Keimer,  B.
Department Solid State Spectroscopy (Bernhard Keimer), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ghiringhelli, G., Le Tacon, M., Minola, M., Blanco-Canosa, S., Mazzoli, C., Brookes, N. B., et al. (2012). Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x. Science, 337(6096), 821-825.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C240-E
Abstract
The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of similar to 3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba2Cu3O6+x, with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (T-c); further cooling below T-c abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.