English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Self-Assembled Electrical Biodetector Based on Reduced Graphene Oxide

MPS-Authors
/persons/resource/persons280131

Kern,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons279757

Balasubramanian,  K.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kurkina, T., Sundaram, S., Sundaram, R. S., Re, F., Masserini, M., Kern, K., et al. (2012). Self-Assembled Electrical Biodetector Based on Reduced Graphene Oxide. ACS Nano, 6(6), 5514-5520.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C3A9-7
Abstract
Large-scale fabrication of graphene-based devices is an aspect of great importance for various applications including chemical and biological sensing. Toward this goal, we present here a novel chemical route for the site-specific realization of devices based on reduced graphene oxide (RGO). Electrodes patterned by photolithography are modified with amino functional groups through electrodeposition. The amine groups function as hooks for the attachment of graphene oxide flakes selectively onto the electrodes. Graphene-like electrical behavior is attained by a subsequent thermal annealing step. We show that this anchoring strategy can be scaled-up to obtain RGO devices at a wafer scale in a facile manner. The scalability of our approach coupled with the use of photolithography is promising for the rapid realization of graphene-based devices. We demonstrate one possible application of the fabricated RGO devices as electrical biosensors through the immunodetection of amyloid beta peptide.