English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Three-Dimensional Chiral Plasmonic Oligomers

MPS-Authors

Hentschel,  M.
Max Planck Society;

/persons/resource/persons279970

Giessen,  H.
Former Research Groups, Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hentschel, M., Schäferling, M., Weiss, T., Liu, N., & Giessen, H. (2012). Three-Dimensional Chiral Plasmonic Oligomers. Nano Letters, 12(5), 2542-2547.


Cite as: https://hdl.handle.net/21.11116/0000-000E-C36D-C
Abstract
The living world is chiral. Chirality or the handedness of a structure or molecule is at the heart of life itself. Recently, it has been shown that plasmonic structures exhibit unprecedented and gigantic chiral optical responses. Here we show that truly three-dimensional arrangements of plasmonic "meta-atoms" only exhibit a chiral optical response if similar plasmonic "atoms" are arranged in a handed fashion as we require resonant plasmonic coupling. Moreover, we demonstrate that such particle groupings, similarly to molecular systems, possess the capability to encode their three-dimensional arrangement in unique and well-modulated spectra making them ideal candidates for a three-dimensional chiral plasmon ruler. Our results are crucial for the future design and improvement of plasmonic chiral optical systems, for example, for ultrasensitive enantiomer sensing on the single molecule level.