English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation

MPS-Authors
/persons/resource/persons279861

Coletti,  C.
Scientific Facility Interface Analysis (Ulrich Starke), Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280552

Starke,  U.
Scientific Facility Interface Analysis (Ulrich Starke), Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Emtsev, K. V., Zakharov, A. A., Coletti, C., Forti, S., & Starke, U. (2011). Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Physical Review B, 84(12): 125423.


Cite as: https://hdl.handle.net/21.11116/0000-000E-BFDD-3
Abstract
The electronic structure of decoupled graphene on SiC(0001) can be tailored by introducing atomically thin layers of germanium at the interface. The electronically inactive (6 root 3 x 6 root 3)R30 degrees reconstructed buffer layer on SiC(0001) is converted into quasi-free-standing monolayer graphene after Ge intercalation and shows the characteristic graphene pi bands as displayed by angle-resolved photoelectron spectroscopy. Low-energy electron microscopy (LEEM) studies reveal an unusual mechanism of the intercalation in which the initial buffer layer is first ruptured into nanoscopic domains to allow the local in-diffusion of germanium to the interface. Upon further annealing, a continuous and homogeneous quasifree graphene film develops. Two symmetrically doped (n- and p-type) phases are obtained that are characterized by different Ge coverages. They can be prepared individually by annealing a Ge film at different temperatures. In an intermediate-temperature regime, a coexistence of the two phases can be achieved. In this transition regime, n-doped islands start to grow on a 100-nm scale within p-doped graphene terraces as revealed by LEEM. Subsequently, the n islands coalesce but still adjacent terraces may display different doping. Hence, lateral p-n junctions can be generated on epitaxial graphene with their size tailored on a mesoscopic scale.