Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dependence of the Redshifted and Blueshifted Photoluminescence Spectra of Single InxGa1-xAs/GaAs Quantum Dots on the Applied Uniaxial Stress

MPG-Autoren
/persons/resource/persons280527

Singh,  R.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;
Former Research Groups, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280417

Rastelli,  A.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;
Former Scientific Facilities, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280485

Schmidt,  O. G.
Department Nanoscale Science (Klaus Kern), Max Planck Institute for Solid State Research, Max Planck Society;
Scientific Facility Nanostructuring Lab (Jürgen Weis), Max Planck Institute for Solid State Research, Max Planck Society;
Abteilung v. Klitzing, Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;
Former Scientific Facilities, Max Planck Institute for Solid State Research, Max Planck Society;

Bester,  G.
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jons, K. D., Hafenbrak, R., Singh, R., Ding, F., Plumhof, J. D., Rastelli, A., et al. (2011). Dependence of the Redshifted and Blueshifted Photoluminescence Spectra of Single InxGa1-xAs/GaAs Quantum Dots on the Applied Uniaxial Stress. Physical Review Letters, 107(21): 217402.


Zitierlink: https://hdl.handle.net/21.11116/0000-000E-C15F-E
Zusammenfassung
We apply external uniaxial stress to tailor the optical properties of In(x)Ga(1-x)As/GaAs quantum dots. Unexpectedly, the emission energy of single quantum dots controllably shifts to both higher and lower energies under tensile strain. Theoretical calculations using a million atom empirical pseudopotential many-body method indicate that the shifting direction and magnitude depend on the lateral extension and more interestingly on the gallium content of the quantum dots. Our experimental results are in good agreement with the underlying theory.