English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synthesis, crystal structure and magnetic properties of the open framework compound Co3Te2O2(PO4)2(OH)4

MPS-Authors
/persons/resource/persons280185

Kremer,  R. K.
Former Scientific Facilities, Max Planck Institute for Solid State Research, Max Planck Society;

/persons/resource/persons280100

Johnsson,  M.
Former Scientific Facilities, Max Planck Institute for Solid State Research, Max Planck Society;
Former Departments, Max Planck Institute for Solid State Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zimmermann, I., Kremer, R. K., & Johnsson, M. (2011). Synthesis, crystal structure and magnetic properties of the open framework compound Co3Te2O2(PO4)2(OH)4. Journal of Solid State Chemistry, 184(11), 3080-3084.


Cite as: https://hdl.handle.net/21.11116/0000-000E-BF9D-B
Abstract
The new compound Co(3)Te(2)O(2)(PO(4))(2)(OH)(4) was synthesized using hydrothermal techniques. It crystallizes in the monoclinic space group C2/m with the unit cell a=19.4317(10) angstrom, b=6.0249(3) angstrom, c=4.7788(2) angstrom, beta=103.139(5)degrees. The crystal structure is an open framework having chains of edge sharing [Co(1)O(6)] octahedra. Other building blocks are [TeO(3)(OH)(2)], [PO(4)] and [Co((2))O(2)(OH)(4)] connected mainly via corner sharing. The -OH groups protrude into channels in the structure. The magnetic susceptibility measured from 2 to 300 K shows two broad anomalies at around 21 K and 4 K. respectively. The peak at similar to 20 K is ascribed to a two-dimensional antiferromagnetic ordering of linear [Co(1)O(6)] chains coupled by interchain interaction via [PO(4)] groups in the Co(1) sheets. The second transition at 4 K is ascribed to a second antiferromagnetic ordering of the moments of the Co(2) entities via super-super exchange involving [PO(4)] and [TeO(3)(OH)(2)] groups. This assignment is strongly supported by low-temperature heat capacity measurements indicating an entropy removal within the high-temperature transition of about twice the magnitude of the low-temperature transition. (C) 2011 Elsevier Inc. All rights reserved.