Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Preprint

Transposon-triggered epigenetic chromatin dynamics modulate EFR-related pathogen response

MPG-Autoren
/persons/resource/persons277331

Xian,  W
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons274884

Contreras,  A       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271846

Shirsekar,  G       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons85266

Weigel,  D       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mencia, R., Arce, A., Houriet, C., Xian, W., Contreras, A., Shirsekar, G., et al. (submitted). Transposon-triggered epigenetic chromatin dynamics modulate EFR-related pathogen response.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-D0FD-B
Zusammenfassung
Infectious diseases drive the evolution of wild plants and impact yield in crop plants. Like animals, plants can sense biotic threats via conserved pathogen-associated patterns (PAMPs). Since an overly robust immune response can harm plants, understanding the mechanisms for tuning defense responses to the appropriate level is vital as we endeavor to develop pathogen-resistant crops. In this paper, we studied the Arabidopsis pattern recognition receptor (PRR) EFR, which senses bacterial EF-Tu. An inverted-repeat transposon (Ea-IR) between EFR and the neighboring XI-k locus controls local chromatin organization, promoting the formation of a repressive chromatin loop. Upon pathogen infection, the chromatin landscape around EFR and Xl-k dynamically changes to allow for increased EFR transcription. Chromatin opening facilitates the passage of RNA polymerase II across the neighboring XI-k gene termination site, leading to a longer XI-k transcript that includes Ea-IR sequences. Dicer-like (DCL) enzymes process the longer Xl-k transcript into small RNAs (sRNAs), which reset chromatin topology to a repressive state, attenuating, in turn, the immune response, reminiscent of attenuation of receptor signaling in other systems. From an evolutionary point of view, we found that natural Arabidopsis accessions missing Ea-IR have a constitutive "EFR-open" chromatin configuration that correlates with higher basal EFR levels and higher background resistance to pathogens. Collectively, our study offers evidence for a scenario in which a transposon, chromatin organization, and gene expression interact to fine-tune immune responses, both during the course of infection and in the course of evolution. Similar gene-associated IRs in crops could provide valuable non-coding targets for genome editing or assisted plant breeding programs.