Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Colloquium: Unconventional fully gapped superconductivity in the heavy-fermion metal CeCu2Si2

MPG-Autoren
/persons/resource/persons126865

Stockert,  Oliver
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126861

Steglich,  Frank
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Smidman, M., Stockert, O., Nica, E. M., Liu, Y., Yuan, H., Si, Q., et al. (2023). Colloquium: Unconventional fully gapped superconductivity in the heavy-fermion metal CeCu2Si2. Reviews of Modern Physics, 95(3): 031002, pp. 1-29. doi:10.1103/RevModPhys.95.031002.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-E2C6-4
Zusammenfassung
The heavy-fermion metal CeCu2Si2 was the first discovered unconventional, non-phonon-mediated superconductor and, for a long time, was believed to exhibit single-band d-wave superconductivity, as inferred from various measurements hinting at a nodal gap structure. More recently, however, measurements using a range of techniques at low temperatures (T < 0.1 K) provided evidence for a fully gapped superconducting order parameter. In this Colloquium, after a historical overview the apparently conflicting results of numerous experimental studies on this compound are surveyed. The different theoretical scenarios that have been applied to understanding the particular gap structure are then addressed, including both isotropic (sign-preserving) and anisotropic two-band s-wave superconductivity, as well as an effective two-band d-wave model, where the latter can explain the currently available experimental data on CeCu2Si2. The lessons from CeCu2Si2 are expected to help uncover the Cooper-pair states in other unconventional, fully gapped superconductors with strongly correlated carriers, and, in particular, highlight the rich variety of such states enabled by orbital degrees of freedom.