English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Laminar differences in functional oxygen metabolism in monkey visual cortex measured with calibrated fMRI

MPS-Authors
/persons/resource/persons83818

Bohraus,  Y       
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK       
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83937

Goense,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bohraus, Y., Merkle, H., Logothetis, N., & Goense, J. (2023). Laminar differences in functional oxygen metabolism in monkey visual cortex measured with calibrated fMRI. Cell Reports, 42(11): 113341. doi:10.1016/j.celrep.2023.113341.


Cite as: https://hdl.handle.net/21.11116/0000-000D-D995-6
Abstract
Blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) of cortical layers relies on the hemodynamic response and is biased toward large veins on the cortical surface. Functional changes in the cerebral metabolic rate of oxygen (ΔCMRO2) may reflect neural cortical function better than BOLD fMRI, but it is unknown whether the calibrated BOLD model for functional CMRO2 measurement remains valid at high resolution. Here, we measure laminar ΔCMRO2 elicited by visual stimulation in macaque primary visual cortex (V1) and find that ΔCMRO2 peaks in the middle of the cortex, in agreement with autoradiographic measures of metabolism. ΔCMRO2 values in gray matter are similar as found previously. Reductions in CMRO2 are associated with veins at the cortical surface, suggesting that techniques for vein removal may improve the accuracy of the model at very high resolution. However, our results show feasibility of laminar ΔCMRO2 measurement, providing a physiologically meaningful metric of laminar functional metabolism.