English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth's surface

MPS-Authors
/persons/resource/persons268387

Kohl,  Matthias
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons288208

Sharma,  Disha
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127588

Cheng,  Yafang
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  Andrea
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kohl, M., Lelieveld, J., Chowdhury, S., Ehrhart, S., Sharma, D., Cheng, Y., et al. (2023). Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth's surface. Atmospheric Chemistry and Physics, 23(20), 13191-13215. doi:10.5194/acp-23-13191-2023.


Cite as: https://hdl.handle.net/21.11116/0000-000D-DA01-C
Abstract
A new global dataset of annually averaged ultrafine particle (UFP) concentrations at the Earth's surface for the years 2015–2017 has been developed through numerical simulations using the ECHAM/MESSy Atmospheric Chemistry model (EMAC). We present total and size-resolved concentrations along with their interannual variability. Size distributions of emitted particles from the contributing source sectors have been derived based on literature reports. The model results of UFP concentrations are evaluated using particle size distribution and particle number concentration measurements from available datasets and the literature. While we obtain reasonable agreement between the model results and observations (logarithmic-scale correlation of r=0.76 for non-remote, polluted regions), the highest values of observed, street-level UFP concentrations are systematically underestimated, whereas in rural environments close to urban areas the model generally overestimates observed UFP concentrations. As the relatively coarse global model does not resolve concentration gradients in urban centres and industrial UFP hotspots, high-resolution data of anthropogenic emissions are used to account for such differences in each model grid box, obtaining UFP concentrations with unprecedented horizontal resolution at the Earth's surface. This observation-guided downscaling further improves the agreement with observations, leading to an increase in the logarithmic-scale correlation between observed and simulated UFP concentrations to r=0.84 in polluted environments (and 0.95 in all regions), a decrease in the root mean squared logarithmic error (from 0.57 to 0.43), and removal of discrepancies associated with air quality and population density gradients within the model grid boxes. The model results are made publicly available for studies on public health and other impacts of atmospheric UFPs, as well as for intercomparison with other regional and global models and datasets.