Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimental signatures of quantum and topological states in frustrated magnetism

MPG-Autoren
/persons/resource/persons126528

Baenitz,  M.
Michael Baenitz, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126833

Schmidt,  B.
Burkhard Schmidt, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khatua, J., Sana, B., Zorko, A., Gomilšek, M., Sethupathi, K., Ramachandra Rao, M., et al. (2023). Experimental signatures of quantum and topological states in frustrated magnetism. Physics Reports, 1041, 1-60. doi:10.1016/j.physrep.2023.09.008.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-DDE1-C
Zusammenfassung
Frustration in magnetic materials arising from competing exchange interactions can prevent the system from adopting long-range magnetic order and can instead lead to a diverse range of novel quantum and topological states with exotic quasiparticle excitations. Here, we review prominent examples of such states, including magnetically-disordered and extensively degenerate spin ices with emergent magnetic monopole excitations, highly-entangled quantum spin liquids with fractional spinon excitations, topological order, and emergent gauge fields, as well as complex particle-like topological spin textures known as skyrmions. We provide an overview of recent advances in the search for magnetically-disordered candidate materials on the three-dimensional pyrochlore lattice and two-dimensional triangular, kagome and honeycomb lattices, the latter with bond-dependent Kitaev interactions, and on lattices supporting topological magnetism. We highlight experimental signatures of these often elusive phenomena and single out the most suitable experimental techniques that can be used to detect them. Our review also aims at providing a comprehensive guide for designing and investigating novel frustrated magnetic materials, with the potential of addressing some important open questions in contemporary condensed matter physics.