English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR)

MPS-Authors
/persons/resource/persons272562

Dreyer,  C
Department Cell Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dreyer, C., Keller, H., Mahfoudi, A., Laudet, V., Krey, G., & Wahli, W. (1993). Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biology of the Cell, 77(1), 67-76. doi:10.1016/s0248-4900(05)80176-5.


Cite as: https://hdl.handle.net/21.11116/0000-000D-E647-0
Abstract
Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.