日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Enhanced diffusion of tracer particles in nonreciprocal mixtures

MPS-Authors
/persons/resource/persons245729

Agudo-Canalejo,  Jaime       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin       
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Benois, A., Jardat, M., Dahirel, V., Démery, V., Agudo-Canalejo, J., Golestanian, R., & Illien, P. (2023). Enhanced diffusion of tracer particles in nonreciprocal mixtures. Physical Review E, 108(5):. doi:10.1103/PhysRevE.108.054606.


引用: https://hdl.handle.net/21.11116/0000-000D-F5F1-E
要旨
We study the diffusivity of a tagged particle in a binary mixture of Brownian particles with nonreciprocal interactions. Numerical simulations reveal that, for a broad class of interaction potentials, nonreciprocity can significantly increase the long-time diffusion coefficient of tracer particles and that this diffusion enhancement is associated with a breakdown of the Einstein relation. These observations are quantified and confirmed via two different and complementary analytical approaches: (i) a linearized stochastic density field theory, which is particularly accurate in the limit of soft interactions, and (ii) a reduced two-body description, which is exact at leading order in the density of particles. The latter reveals that diffusion enhancement can be attributed to the formation of transiently propelled dimers of particles, whose cohesion and speed are controlled by the nonreciprocal interactions.