English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia

MPS-Authors

Zhang,  Yu Wei
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

Schönberger,  Katharina
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

/persons/resource/persons204274

Cabezas-Wallscheid,  Nina
Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

10.15252_embj.2022112348.pdf
(Publisher version), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, Y. W., Schönberger, K., & Cabezas-Wallscheid, N. (2023). Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. The EMBO Journal, e112348. doi:10.15252/embj.2022112348.


Cite as: https://hdl.handle.net/21.11116/0000-000D-FED8-2
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.