日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

A primer on the use of computational modelling to investigate affective states, affective disorders and animal welfare in non-human animals

MPS-Authors
/persons/resource/persons217460

Dayan,  P       
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Neville, V., Mendl, M., Paul, E., Seriès, P., & Dayan, P. (2024). A primer on the use of computational modelling to investigate affective states, affective disorders and animal welfare in non-human animals. Cognitive, Affective and Behavioral Neuroscience, 24(2), 370-383. doi: 10.3758/s13415-023-01137-w.


引用: https://hdl.handle.net/21.11116/0000-000E-00FA-8
要旨
Objective measures of animal emotion-like and mood-like states are essential for preclinical studies of affective disorders and for assessing the welfare of laboratory and other animals. However, the development and validation of measures of these affective states poses a challenge partly because the relationships between affect and its behavioural, physiological and cognitive signatures are complex. Here, we suggest that the crisp characterisations offered by computational modelling of the underlying, but unobservable, processes that mediate these signatures should provide better insights. Although this computational psychiatry approach has been widely used in human research in both health and disease, translational computational psychiatry studies remain few and far between. We explain how building computational models with data from animal studies could play a pivotal role in furthering our understanding of the aetiology of affective disorders, associated affective states and the likely underlying cognitive processes involved. We end by outlining the basic steps involved in a simple computational analysis.