English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural insights into the iron nitrogenase complex

MPS-Authors
/persons/resource/persons269079

Schmidt,  Frederik Vincent
Emmy Noether research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254700

Schulz,  Luca
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254859

Zarzycki,  Jan
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons269069

Oehlmann,  Niels Nathan
Emmy Noether research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254247

Erb,  Tobias J.       
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons261270

Rebelein,  Johannes G.       
Emmy Noether research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schmidt, F. V., Schulz, L., Zarzycki, J., Prinz, S., Oehlmann, N. N., Erb, T. J., et al. (2024). Structural insights into the iron nitrogenase complex. Nature Structural & Molecular Biology, 31(1), 150-158. doi:10.1038/s41594-023-01124-2.


Cite as: https://hdl.handle.net/21.11116/0000-000E-04EE-2
Abstract
Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit ‘communication’ and thus the nitrogenase mechanism.