English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Perspectives for machine learning applied to data-rich experiments on complex materials

MPS-Authors
/persons/resource/persons125143

Freysoldt,  Christoph
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons265253

Saxena,  Alaukik
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons264979

Wang,  Ning
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons269441

Sreekala,  Lekshmi
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Freysoldt, C., Saxena, A., Wang, N., & Sreekala, L. (2023). Perspectives for machine learning applied to data-rich experiments on complex materials. Talk presented at Materials Chain International Conference. Bochum, Germany. 2023-08-31.


Cite as: https://hdl.handle.net/21.11116/0000-000E-0624-3
Abstract
There is no abstract available