日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

講演

Perspectives for machine learning applied to data-rich experiments on complex materials

MPS-Authors
/persons/resource/persons125143

Freysoldt,  Christoph
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons265253

Saxena,  Alaukik
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons264979

Wang,  Ning
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons269441

Sreekala,  Lekshmi
Defect Chemistry and Spectroscopy, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Freysoldt, C., Saxena, A., Wang, N., & Sreekala, L. (2023). Perspectives for machine learning applied to data-rich experiments on complex materials. Talk presented at Materials Chain International Conference. Bochum, Germany. 2023-08-31.


引用: https://hdl.handle.net/21.11116/0000-000E-0624-3
要旨
要旨はありません