English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Deleterious Phenotypes in Wild Arabidopsis arenosa Populations Are Common and Linked to Runs of Homozygosity

MPS-Authors
/persons/resource/persons272441

Barragan,  AC       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons272445

Collenberg,  M       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271416

Schwab,  R       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;
Research Group Ecological Genetics, Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons272912

Kersten,  S       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons274735

Kerstens,  MHL       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons83809

Bezrukov,  I       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons272552

Bemm,  F       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons85266

Weigel,  D       
Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Barragan, A., Collenberg, M., Schwab, R., Kersten, S., Kerstens, M., Požárová, D., et al. (2024). Deleterious Phenotypes in Wild Arabidopsis arenosa Populations Are Common and Linked to Runs of Homozygosity. G3: Genes, Genomes, Genetics, 14(3): jkad290. doi:10.1093/g3journal/jkad290.


Cite as: https://hdl.handle.net/21.11116/0000-000E-1713-3
Abstract
In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.