English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nanotip-Induced Electric Field for Hydrogen Catalysis

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Xue, F., Zhang, C., Peng, H., Liu, F., Yan, X., Yao, Q., et al. (2023). Nanotip-Induced Electric Field for Hydrogen Catalysis. Nano Letters, 23(24), 11827-11834. doi:10.1021/acs.nanolett.3c03845.


Cite as: https://hdl.handle.net/21.11116/0000-000E-25F3-6
Abstract
Local electric field induced by the lightning-rod effect attracts great attention for regulating the local microenvironment and electronic properties of active sites. Nevertheless, local electric-field-assisted applications are mainly limited to metals with strong surface plasmonic resonance properties (e.g., Au, Ag, and Cu). Herein, we fabricate RuCu snow-like nanosheets (SNSs) with high-curvature nanotips for enhancing the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER). Theoretical simulations show that RuCu SNSs can induce a strong local electric field around the sharp nanotips, which favors the accumulation of OH- for HOR and H+ for HER. Cu incorporation can modulate the binding strength of OH* and H*, leading to significantly enhanced HOR and HER performance. Impressively, the mass activity of RuCu SNSs for alkaline HOR is 31.3 times higher than that of RuCu nanocrystals without sharp tips. Besides, the required overpotential for reaching 10 mA cm-2 during HER over RuCu SNSs is 14.0 mV. © 2023 American Chemical Society.