English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Resolving Nonequilibrium Shape Variations among Millions of Gold Nanoparticles

MPS-Authors
/persons/resource/persons289093

Shen,  Z.
Department of Physics, National University of Singapore;
Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons255347

Fangohr,  H.
European XFEL;
Computational Science, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons260450

Mall,  A.
Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons250901

Wollweber,  T.
Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging, Universität Hamburg;

/persons/resource/persons228497

Ayyer,  K.
Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging, Universität Hamburg;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)

nn4c00378_si_001.pdf
(Supplementary material), 3MB

Citation

Shen, Z., Xavier, P. L., Bean, R., Bielecki, J., Bergemann, M., Daurer, B. J., et al. (2024). Resolving Nonequilibrium Shape Variations among Millions of Gold Nanoparticles. ACS Nano, 18(24), 15576-15589. doi:10.1021/acsnano.4c00378.


Cite as: https://hdl.handle.net/21.11116/0000-000E-3608-D
Abstract
Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) creates opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome: (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between 105 structural models and 106 XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the nonequilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable “shape envelope” among nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles’ shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful.