日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Biskyrmion-based artificial neuron

MPS-Authors

Ribeiro de Assis,  Ismael
External Organizations;
International Max Planck Research School for Science and Technology of Nano-Systems, Max Planck Institute of Microstructure Physics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Ribeiro de Assis, I., Mertig, I., & Göbel, B. (2023). Biskyrmion-based artificial neuron. Neuromorphic Computing and Engineering, 3(1):. doi:10.1088/2634-4386/acb841.


引用: https://hdl.handle.net/21.11116/0000-000E-3A55-2
要旨
Magnetic skyrmions are nanoscale magnetic whirls that are highly stable and can be moved by currents. They have led to the prediction of a skyrmion-based artificial neuron device with leak-integrate-fire functionality. However, so far, these devices lack a refractory process, estimated to be crucial for neuronal dynamics. Here we demonstrate that a biskyrmion-based artificial neuron overcomes this insufficiency. When driven by spin-orbit torques, a single biskyrmion splits into two subskyrmions that move towards a designated location and can be detected electrically, ultimately resembling the excitation process of a neuron that fires. The attractive interaction of the two skyrmions leads to a unique trajectory: Once they reach the detector area, they automatically return to the center to reform the biskyrmion but on a different path. During this reset period, the neuron cannot fire again. Our suggested device resembles a biological neuron with the leak, integrate, fire and refractory characteristics increasing the bio-fidelity of current skyrmion-based devices.