English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Accessing Ultrafast Spin-Transport Dynamics in Copper Using Broadband Terahertz Spectroscopy

MPS-Authors
/persons/resource/persons213548

Rouzegar,  Reza
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons209285

Gückstock,  Oliver
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons84716

Seifert,  Tom
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21693

Kampfrath,  Tobias       
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:2310.12082.pdf
(Preprint), 986KB

PhysRevLett.132.226703.pdf
(Publisher version), 887KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jechumtál, J., Rouzegar, R., Gückstock, O., Denker, C., Hoppe, W., Remy, Q., et al. (2024). Accessing Ultrafast Spin-Transport Dynamics in Copper Using Broadband Terahertz Spectroscopy. Physical Review Letters, 132(22): 226703. doi:10.1103/PhysRevLett.132.226703.


Cite as: https://hdl.handle.net/21.11116/0000-000E-521B-8
Abstract
We study the spatiotemporal dynamics of ultrafast electron spin transport across nanometer-thick copper layers using broadband terahertz spectroscopy. Our analysis of temporal delays, broadening and attenuation of the spin-current pulse revealed ballistic-like propagation of the pulse peak, approaching the Fermi velocity, and diffusive features including a significant velocity dispersion. A comparison to the frequency-dependent Ficks law identified the diffusion-dominated transport regime for distances larger than 2 nm. The findings lie the groundwork for designing future broadband spintronic devices.