日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Heat flux for semilocal machine-learning potentials

MPS-Authors
/persons/resource/persons213541

Langer,  Marcel Florin       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons203282

Knoop,  Florian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21413

Carbogno,  Christian       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons173798

Rupp,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

PhysRevB.108.L100302.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Langer, M. F., Knoop, F., Carbogno, C., Scheffler, M., & Rupp, M. (2023). Heat flux for semilocal machine-learning potentials. Physical Review B, 108(10):. doi:10.1103/PhysRevB.108.L100302.


引用: https://hdl.handle.net/21.11116/0000-000E-525D-E
要旨
The Green-Kubo (GK) method is a rigorous framework for heat transport simulations in materials. However, it requires an accurate description of the potential-energy surface and carefully converged statistics. Machine-learning potentials can achieve the accuracy of first-principles simulations while allowing to reach well beyond their simulation time and length scales at a fraction of the cost. In this Letter, we explain how to apply the GK approach to the recent class of message-passing machine-learning potentials, which iteratively consider semilocal interactions beyond the initial interaction cutoff. We derive an adapted heat flux formulation that can be implemented using automatic differentiation without compromising computational efficiency. The approach is demonstrated and validated by calculating the thermal conductivity of zirconium dioxide across temperatures.